3.1.79 \(\int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx\) [79]

3.1.79.1 Optimal result
3.1.79.2 Mathematica [C] (verified)
3.1.79.3 Rubi [A] (warning: unable to verify)
3.1.79.4 Maple [A] (verified)
3.1.79.5 Fricas [B] (verification not implemented)
3.1.79.6 Sympy [F]
3.1.79.7 Maxima [F(-2)]
3.1.79.8 Giac [F]
3.1.79.9 Mupad [B] (verification not implemented)

3.1.79.1 Optimal result

Integrand size = 25, antiderivative size = 394 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=-\frac {b^{3/2} \left (5 a^2+b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt {e}}+\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}} \]

output
-b^(3/2)*(5*a^2+b^2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))/ 
a^(3/2)/(a^2+b^2)^2/d/e^(1/2)+1/2*(a^2-2*a*b-b^2)*arctan(1-2^(1/2)*(e*cot( 
d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)-1/2*(a^2-2*a*b-b^2)*a 
rctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2 
)+1/4*(a^2+2*a*b-b^2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c)) 
^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)-1/4*(a^2+2*a*b-b^2)*ln(e^(1/2)+cot(d 
*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)- 
b^2*(e*cot(d*x+c))^(1/2)/a/(a^2+b^2)/d/e/(a+b*cot(d*x+c))
 
3.1.79.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.79 (sec) , antiderivative size = 295, normalized size of antiderivative = 0.75 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=-\frac {\sqrt {\cot (c+d x)} \left (48 \sqrt {a} b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )+\frac {12 b^{3/2} \left (a^2+b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )}{a^{3/2}}+\frac {12 b^2 \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{a (a+b \cot (c+d x))}-16 a b \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )-3 \sqrt {2} (a-b) (a+b) \left (2 \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{12 \left (a^2+b^2\right )^2 d \sqrt {e \cot (c+d x)}} \]

input
Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]
 
output
-1/12*(Sqrt[Cot[c + d*x]]*(48*Sqrt[a]*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Cot[c + 
 d*x]])/Sqrt[a]] + (12*b^(3/2)*(a^2 + b^2)*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d* 
x]])/Sqrt[a]])/a^(3/2) + (12*b^2*(a^2 + b^2)*Sqrt[Cot[c + d*x]])/(a*(a + b 
*Cot[c + d*x])) - 16*a*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, 
 -Cot[c + d*x]^2] - 3*Sqrt[2]*(a - b)*(a + b)*(2*ArcTan[1 - Sqrt[2]*Sqrt[C 
ot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + Log[1 - Sqrt[2] 
*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + 
 Cot[c + d*x]])))/((a^2 + b^2)^2*d*Sqrt[e*Cot[c + d*x]])
 
3.1.79.3 Rubi [A] (warning: unable to verify)

Time = 1.49 (sec) , antiderivative size = 355, normalized size of antiderivative = 0.90, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.840, Rules used = {3042, 4052, 27, 3042, 4136, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle -\frac {\int -\frac {b^2 e \cot ^2(c+d x)-2 a b e \cot (c+d x)+\left (2 a^2+b^2\right ) e}{2 \sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {b^2 e \cot ^2(c+d x)-2 a b e \cot (c+d x)+\left (2 a^2+b^2\right ) e}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b^2 e \tan \left (c+d x+\frac {\pi }{2}\right )^2+2 a b e \tan \left (c+d x+\frac {\pi }{2}\right )+\left (2 a^2+b^2\right ) e}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a^2+b^2}+\frac {\int \frac {2 \left (a \left (a^2-b^2\right ) e-2 a^2 b e \cot (c+d x)\right )}{\sqrt {e \cot (c+d x)}}dx}{a^2+b^2}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a^2+b^2}+\frac {2 \int \frac {a \left (a^2-b^2\right ) e-2 a^2 b e \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{a^2+b^2}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {2 \int \frac {2 b e \tan \left (c+d x+\frac {\pi }{2}\right ) a^2+\left (a^2-b^2\right ) e a}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\frac {4 \int -\frac {a e \left (\left (a^2-b^2\right ) e-2 a b e \cot (c+d x)\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 \int \frac {a e \left (\left (a^2-b^2\right ) e-2 a b e \cot (c+d x)\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \int \frac {\left (a^2-b^2\right ) e-2 a b e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 a e \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {b^2 e \left (5 a^2+b^2\right ) \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}-\frac {4 a e \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-\frac {2 b^2 \left (5 a^2+b^2\right ) \int \frac {1}{\frac {b \cot ^2(c+d x)}{e}+a}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}-\frac {4 a e \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {2 b^{3/2} \sqrt {e} \left (5 a^2+b^2\right ) \arctan \left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} d \left (a^2+b^2\right )}-\frac {4 a e \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a e \left (a^2+b^2\right )}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

input
Int[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]
 
output
-((b^2*Sqrt[e*Cot[c + d*x]])/(a*(a^2 + b^2)*d*e*(a + b*Cot[c + d*x]))) + ( 
(2*b^(3/2)*(5*a^2 + b^2)*Sqrt[e]*ArcTan[(Sqrt[b]*Cot[c + d*x])/(Sqrt[a]*Sq 
rt[e])])/(Sqrt[a]*(a^2 + b^2)*d) - (4*a*e*(((a^2 - 2*a*b - b^2)*(-(ArcTan[ 
1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 
+ (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])))/2 + ((a^2 + 
2*a*b - b^2)*(-1/2*Log[e + e*Cot[c + d*x] - Sqrt[2]*Sqrt[e]*Sqrt[e*Cot[c + 
 d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Cot[c + d*x] + Sqrt[2]*Sqrt[e]*Sqrt[ 
e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/((a^2 + b^2)*d))/(2*a*(a^2 + b^ 
2)*e)
 

3.1.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.1.79.4 Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 396, normalized size of antiderivative = 1.01

method result size
derivativedivides \(-\frac {2 e^{3} \left (\frac {b^{2} \left (\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 a \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (5 a^{2}+b^{2}\right ) \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}\, b}{\sqrt {a e b}}\right )}{2 a \sqrt {a e b}}\right )}{e^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (a^{2} e -b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{3} \left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(396\)
default \(-\frac {2 e^{3} \left (\frac {b^{2} \left (\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 a \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (5 a^{2}+b^{2}\right ) \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}\, b}{\sqrt {a e b}}\right )}{2 a \sqrt {a e b}}\right )}{e^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (a^{2} e -b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{3} \left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(396\)

input
int(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-2/d*e^3*(b^2/e^3/(a^2+b^2)^2*(1/2*(a^2+b^2)/a*(e*cot(d*x+c))^(1/2)/(e*cot 
(d*x+c)*b+a*e)+1/2*(5*a^2+b^2)/a/(a*e*b)^(1/2)*arctan((e*cot(d*x+c))^(1/2) 
*b/(a*e*b)^(1/2)))+1/e^3/(a^2+b^2)^2*(1/8*(a^2*e-b^2*e)*(e^2)^(1/4)/e^2*2^ 
(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/ 
2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2 
*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2 
)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/4*a*b/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d* 
x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+( 
e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^ 
2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+ 
c))^(1/2)+1))))
 
3.1.79.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3102 vs. \(2 (331) = 662\).

Time = 0.61 (sec) , antiderivative size = 6248, normalized size of antiderivative = 15.86 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=\text {Too large to display} \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="fricas")
 
output
Too large to include
 
3.1.79.6 Sympy [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=\int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}} \left (a + b \cot {\left (c + d x \right )}\right )^{2}}\, dx \]

input
integrate(1/(e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c))**2,x)
 
output
Integral(1/(sqrt(e*cot(c + d*x))*(a + b*cot(c + d*x))**2), x)
 
3.1.79.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.79.8 Giac [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=\int { \frac {1}{{\left (b \cot \left (d x + c\right ) + a\right )}^{2} \sqrt {e \cot \left (d x + c\right )}} \,d x } \]

input
integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="giac")
 
output
integrate(1/((b*cot(d*x + c) + a)^2*sqrt(e*cot(d*x + c))), x)
 
3.1.79.9 Mupad [B] (verification not implemented)

Time = 20.82 (sec) , antiderivative size = 9400, normalized size of antiderivative = 23.86 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx=\text {Too large to display} \]

input
int(1/((e*cot(c + d*x))^(1/2)*(a + b*cot(c + d*x))^2),x)
 
output
(log(- (((((((((128*b^2*e^10*(2*b^6 - a^6 + 9*a^2*b^4 + 6*a^4*b^2))/(a*d) 
- 256*b^3*e^10*(e*cot(c + d*x))^(1/2)*(a^2 - b^2)*(a^2 + b^2)^2*(1i/(d^2*e 
*(a*1i - b)^4))^(1/2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (64*b^2*e^9*(e 
*cot(c + d*x))^(1/2)*(2*b^8 - a^8 + 5*a^2*b^6 + 67*a^4*b^4 - a^6*b^2))/(a* 
d^2*(a^2 + b^2)^2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (32*b^5*e^9*(25*a 
^6 + b^6 - 13*a^2*b^4 - 85*a^4*b^2))/(a^2*d^3*(a^2 + b^2)^3))*(1i/(d^2*e*( 
a*1i - b)^4))^(1/2))/2 - (16*b^5*e^8*(e*cot(c + d*x))^(1/2)*(b^6 - 27*a^6 
+ 7*a^2*b^4 + 11*a^4*b^2))/(a^2*d^4*(a^2 + b^2)^4))*(1i/(d^2*e*(a*1i - b)^ 
4))^(1/2))/2 - (16*b^6*e^8*(5*a^2 + b^2))/(a*d^5*(a^2 + b^2)^4))*(-1/(a^4* 
d^2*e*1i + b^4*d^2*e*1i - a^2*b^2*d^2*e*6i + 4*a*b^3*d^2*e - 4*a^3*b*d^2*e 
))^(1/2))/2 - log(- (((((((((128*b^2*e^10*(2*b^6 - a^6 + 9*a^2*b^4 + 6*a^4 
*b^2))/(a*d) + 256*b^3*e^10*(e*cot(c + d*x))^(1/2)*(a^2 - b^2)*(a^2 + b^2) 
^2*(1i/(d^2*e*(a*1i - b)^4))^(1/2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 + ( 
64*b^2*e^9*(e*cot(c + d*x))^(1/2)*(2*b^8 - a^8 + 5*a^2*b^6 + 67*a^4*b^4 - 
a^6*b^2))/(a*d^2*(a^2 + b^2)^2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (32* 
b^5*e^9*(25*a^6 + b^6 - 13*a^2*b^4 - 85*a^4*b^2))/(a^2*d^3*(a^2 + b^2)^3)) 
*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 + (16*b^5*e^8*(e*cot(c + d*x))^(1/2)*( 
b^6 - 27*a^6 + 7*a^2*b^4 + 11*a^4*b^2))/(a^2*d^4*(a^2 + b^2)^4))*(1i/(d^2* 
e*(a*1i - b)^4))^(1/2))/2 - (16*b^6*e^8*(5*a^2 + b^2))/(a*d^5*(a^2 + b^2)^ 
4))*(-1/(4*(a^4*d^2*e*1i + b^4*d^2*e*1i - a^2*b^2*d^2*e*6i + 4*a*b^3*d^...